Problem set 2

Due date: 28th Jan

Part A (submit any three)

Exercise 10. (1) Let $X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a continuous function. Show that X is a random variable. Show that X is a r.v. if it is (a) right continuous or (b) lower semicontinuous or (c) non-decreasing (take $m=n=1$ for the last one).
(2) If μ is a Borel p.m. on \mathbb{R} with $\operatorname{CDF} F$, then find the push-forward of μ under F.

Exercise 11. Show that composition of random variables is a random variable. Show that real-valued random variables on a given (Ω, \mathcal{F}) are closed under linear combinations, under multiplication, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.
Exercise 12. Let $\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{k / n}$ and let μ be the uniform p.m. Show directly by definition that $d\left(\mu_{n}, \mu\right) \rightarrow 0$ as $n \rightarrow \infty$.

Exercise 13 (Change of variable for densities). (1) Let μ be a p.m. on \mathbb{R} with density f by which we mean that its $\operatorname{CDF} F_{\mu}(x)=\int_{-\infty}^{x} f(t) d t$ (you may assume that f is continuous, non-negative and the Riemann integral $\int_{\mathbb{R}} f=1$). Then, find the (density of the) push forward measure of μ under (a) $T(x)=x+a$ (b) $T(x)=b x$ (c) T is any increasing and differentiable function.
(2) If X has $N\left(\mu, \sigma^{2}\right)$ distribution, find the distribution of $(X-\mu) / \sigma$.

Exercise 14. (1) Let $X=\left(X_{1}, \ldots, X_{n}\right)$. Show that X is an \mathbb{R}^{d}-valued r.v. if and only if X_{1}, \ldots, X_{n} are (realvalued) random variables. How does $\sigma(X)$ relate to $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$?
(2) Let $X: \Omega_{1} \rightarrow \Omega_{2}$ be a random variable. If $X(\omega)=X\left(\omega^{\prime}\right)$ for some $\omega, \omega^{\prime} \in \Omega_{1}$, show that there is no set $A \in \sigma(X)$ such that $\omega \in A$ and $\omega^{\prime} \notin A$ or vice versa. [Extra! If $Y: \Omega_{1} \rightarrow \Omega_{2}$ is another r.v. which is measurable w.r.t. $\sigma(X)$ on Ω_{1}, then show that Y is a function of X].

Part B (submit any two)

Exercise 15 (Levy metric).
(1) Show that the Lévy metric on $\mathcal{P}\left(\mathbb{R}^{d}\right)$ defined in class is actually a metric.
(2) Show that under the Lévy metric, $\mathcal{P}\left(\mathbb{R}^{d}\right)$ is a complete and seperable metric space.

Exercise 16. On the probabiity space $([0,1], \mathcal{B}, \mathbf{m})$, for $k \geq 1$, define the functions

$$
X_{k}(t):= \begin{cases}0 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j}{2^{k}}, \frac{2 j+1}{2^{k}}\right) . \\ 1 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j+1}{2^{k}}, \frac{2 j+2}{2^{k}}\right) \text { or } t=1 .\end{cases}
$$

(1) For any $n \geq 1$, what is the distribution of X_{n} ?
(2) For any fixed $n \geq 1$, find the joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$.
[Note: $X_{k}(t)$ is just the $k^{\text {th }}$ digit in the binary expansion of t. Dyadic rationals have two binary expansions, and we have chosen the finite expansion (except at $t=1$)].
Exercise 17 (Coin tossing space). Continuing with the previous example, consider the mapping $X:[0,1] \rightarrow\{0,1\}^{\mathbb{N}}$ defined by $X(t)=\left(X_{1}(t), X_{2}(t), \ldots\right)$. With the Borel σ-algebra on $[0,1]$ and the σ-algebra generated by cylinder sets on $\{0,1\}^{\mathbb{N}}$, show that X is a random variable and find the push-foward of the Lebesue measure under X.
Exercise 18 (Equivalent conditions for weak convergence). Show that the following statements are equivalent to $\mu_{n} \xrightarrow{d} \mu$.
(1) $\limsup _{n \rightarrow \infty} \mu_{n}(F) \leq \mu(F)$ if F is closed.
(2) $\liminf _{n \rightarrow \infty} \mu_{n}(G) \geq \mu(G)$ if G is open.
(3) $\limsup \operatorname{sum}_{n \rightarrow \infty} \mu_{n}(A)=\mu(A)$ if $A \in \mathcal{F}$ and $\mu(\partial A)=0$.

