Problem set 2

Due date: 28th Jan

Part A (submit any three)

- **Exercise 10.** (1) Let $X : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function. Show that X is a random variable. Show that X is a r.v. if it is (a) right continuous or (b) lower semicontinuous or (c) non-decreasing (take m = n = 1 for the last one).
 - (2) If μ is a Borel p.m. on \mathbb{R} with CDF *F*, then find the push-forward of μ under *F*.

Exercise 11. Show that composition of random variables is a random variable. Show that real-valued random variables on a given (Ω, \mathcal{F}) are closed under linear combinations, under multiplication, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

Exercise 12. Let $\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{k/n}$ and let μ be the uniform p.m. Show directly by definition that $d(\mu_n, \mu) \to 0$ as $n \to \infty$.

- **Exercise 13** (Change of variable for densities). (1) Let μ be a p.m. on \mathbb{R} with density f by which we mean that its CDF $F_{\mu}(x) = \int_{-\infty}^{x} f(t) dt$ (you may assume that f is continuous, non-negative and the Riemann integral $\int_{\mathbb{R}} f = 1$). Then, find the (density of the) push forward measure of μ under (a) T(x) = x + a (b) T(x) = bx (c) T is any increasing and differentiable function.
 - (2) If *X* has $N(\mu, \sigma^2)$ distribution, find the distribution of $(X \mu)/\sigma$.
- **Exercise 14.** (1) Let $X = (X_1, ..., X_n)$. Show that X is an \mathbb{R}^d -valued r.v. if and only if $X_1, ..., X_n$ are (real-valued) random variables. How does $\sigma(X)$ relate to $\sigma(X_1), ..., \sigma(X_n)$?
 - (2) Let $X : \Omega_1 \to \Omega_2$ be a random variable. If $X(\omega) = X(\omega')$ for some $\omega, \omega' \in \Omega_1$, show that there is no set $A \in \sigma(X)$ such that $\omega \in A$ and $\omega' \notin A$ or vice versa. [Extra! If $Y : \Omega_1 \to \Omega_2$ is another r.v. which is measurable w.r.t. $\sigma(X)$ on Ω_1 , then show that Y is a function of X].

Part B (submit any two)

Exercise 15 (Levy metric). (1) Show that the Lévy metric on $\mathcal{P}(\mathbb{R}^d)$ defined in class is actually a metric. (2) Show that under the Lévy metric, $\mathcal{P}(\mathbb{R}^d)$ is a complete and separable metric space.

Exercise 16. On the probability space $([0,1], \mathcal{B}, \mathbf{m})$, for $k \ge 1$, define the functions

$$X_k(t) := \begin{cases} 0 & \text{if } t \in \bigcup_{\substack{j=0\\j=0}}^{2^{k-1}-1} [\frac{2j}{2^k}, \frac{2j+1}{2^k}).\\ 1 & \text{if } t \in \bigcup_{\substack{j=0\\j=0}}^{2^{k-1}-1} [\frac{2j+1}{2^k}, \frac{2j+2}{2^k}) \text{ or } t = 1. \end{cases}$$

- (1) For any $n \ge 1$, what is the distribution of X_n ?
- (2) For any fixed $n \ge 1$, find the joint distribution of (X_1, \ldots, X_n) .

[Note: $X_k(t)$ is just the k^{th} digit in the binary expansion of *t*. Dyadic rationals have two binary expansions, and we have chosen the finite expansion (except at t = 1)].

Exercise 17 (Coin tossing space). Continuing with the previous example, consider the mapping $X : [0,1] \rightarrow \{0,1\}^{\mathbb{N}}$ defined by $X(t) = (X_1(t), X_2(t), \ldots)$. With the Borel σ -algebra on [0,1] and the σ -algebra generated by cylinder sets on $\{0,1\}^{\mathbb{N}}$, show that X is a random variable and find the push-foward of the Lebesue measure under X.

Exercise 18 (Equivalent conditions for weak convergence). Show that the following statements are equivalent to $\mu_n \xrightarrow{d} \mu$.

- (1) $\limsup_{n\to\infty} \mu_n(F) \le \mu(F)$ if F is closed.
- (2) $\liminf_{n\to\infty} \mu_n(G) \ge \mu(G)$ if G is open.
- (3) $\limsup_{n\to\infty} \mu_n(A) = \mu(A)$ if $A \in \mathcal{F}$ and $\mu(\partial A) = 0$.